El Número de Oro o Divina Proporción, presente en el cuerpo humano, la naturaleza, el arte o la música

hombre de vitrubio
Compartir en facebook
Compartir en twitter
Compartir en linkedin
Compartir en whatsapp
Compartir en telegram
Compartir en email

Se llama número áureo o número de oro al número que se escribía en los sitios públicos de Atenas con caracteres de oro y representaba el número de orden correspondiente a cada uno de los 19 años del periodo en que los novilunios vuelven a suceder en los mismos días.

La definición anterior aparece en el diccionario Espasa. El número áureo equivale a 1,61803398 y hay constancia de su conocimiento en civilizaciones tan antiguas como Babilonia y Asiria alrededor del año 2000 a C.

También denominado Proporción Áurea o Razón Aurea, es un número irracional representado por la letra griega φ (phi). Todos conocemos el dibujo que Leonardo da Vinci hizo para ilustrar el libro ‘La Divina Proporción’ del matemático Luca Pacioli, el cuál propone un hombre perfecto (homo quadratus) en el que las relaciones entre las distintas partes del cuerpo se fundamentan en el número de oro, tal y cómo se muestra en el famoso dibujo.

Golden Ratio

La proporción áurea está en todas partes:

1- En el cuerpo humano. Resulta que el cociente entre la altura del hombre y la distancia del ombligo a la punta de la mano es el número áureo. La más llamativa tal vez sea la relativa al ombligo: si se divide la altura total de un hombre entre la distancia del ombligo a los pies obtenemos el número áureo. En la investigación sobre la odontología se ha demostrado que la dentadura va creciendo según la proporción áurea. En nuestras manos las falanges están en sucesión áurea 6.

 

partenon

2- En las artes plásticas. Aparece en el siglo V a C en Atenas, los griegos lo conocían y utilizaban en los diseños arquitectónicos y escultóricos. Una de las construcciones más famosas en las que se ha utilizado es el Partenón. También encontramos las proporciones del rectángulo áureo y sus secciones en el Edificio de la O.N.U en Nueva York.

Phi Fibonacci

3- En la música. En varias sonatas para piano de Mozart, la proporción entre el desarrollo del tema y su introducción es la más cercana posible a la razón áurea. Aunque no se sabe que Beethoven estuviera al tanto de esto, en su Quinta Sinfonía, distribuye el tema siguiendo la sección áurea. En instrumentos como el piano, ya que está constituido por siete octavas ordenadas de forma creciente de graves a agudas. Así, los primeros seis números de la Sucesión de Fibonacci, muy similar a la proporción áurea, figuran en una octava de piano, la cual consiste en 13 teclas: 8 teclas blancas y 5 teclas negras, en grupos de 2 y 3.

 

4- En las matemáticas. El número de oro o proporción áurea están presentes en todos los objetos geométricos regulares o semiregulares en los que haya simetría pentagonal, que sean pentágonos o que aparezca de alguna manera la raíz cuadrada de cinco. Está relacionado con los sólidos platónicos, en particular con el icosaedro y el dodecaedro, cuyas dimensiones están dadas en términos del número de oro.

rostro proporcion aurea

5- En la naturaleza. Hay muchos elementos relacionados con la sección áurea o la secuencia de Fibonacci que tienen una gran similitud. La disposición de los pétalos de las flores, La distribución de las hojas en un tallo.

La relación entre las nervaduras de las hojas de los árboles. La relación entre el grosor de las ramas principales y el tronco, o entre las ramas principales y las secundarias. La cantidad de espirales de una piña.

Estos números son elementos de la sucesión de Fibonacci y el cociente de dos elementos consecutivos tiende al número áureo. En la cantidad de pétalos en las flores existen por ejemplo flores con 3, 5 y 8 pétalos y también con 13, 21, 34, 55, 89 y 144. Está en el ADN y así podemos descubrirlo en infinidad de ejemplos más.

concha

Para más información visitar:   Proporcion aurea o numero de oro




Compartir en facebook
Compartir en twitter
Compartir en linkedin
Compartir en whatsapp
Compartir en telegram
Compartir en email

Artículos Relacionados